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Abstract. The effects of applying electric fields to a reactor with kinetics based on an ionic version of the
cubic autocatalator are considered. Three types of boundary condition are treated, namely (constant) prescribed
concentration, zero flux and periodic. A linear stability analysis is undertaken and this reveals that the conditions
for bifurcation from the spatially uniform state are the same for both the prescribed concentration and zero-flux
boundary conditions, suggesting bifurcation to steady structures, whereas, for periodic boundary conditions, the
bifurcation is essentially different, being of the Hopf type, leading to travelling-wave structures. The various pre-
dictions from linear theory are confirmed through extensive numerical simulations of the initial-value problem and
by determining solutions to the (non-linear) steady state equations. These reveal, for both prescribed concentration
and zero-flux boundary conditions, that applying an electric field can change the basic pattern form, give rise to
spatial structure where none would arise without the field, can give multistability and can, if sufficiently strong,
suppress spatial structure entirely. For periodic boundary conditions, only travelling waves are found, their speed
of propagation and wavelength increasing with increasing field strength, and are found to form no matter how
strong the applied field.

Key words: reaction-diffusion systems, ionic systems, electric-field effects, spatial structure, Turing bifurcations,
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1. Introduction

Applying electric fields to ionic reacting chemical systems has been concerned mainly with
travelling waves, with both pulse and front waves being considered. The former is exemplified
by the excitable Belousov–Zhabotinsky (BZ) system, where both wave reversal and wave
splitting have been observed in one-dimensional reactors [1]. In a two-dimensional config-
uration, wave breaking with spirals forming on the broken ends [2], spiral break up [3] and
annihilation [4] and spiral drift [5, 6] have all been observed experimentally. These features
have also been confirmed by numerical simulations of the appropriate models [2, 4, 5, 7, 8].
Experimental studies into the effects of electric fields on front waves have been based mostly
on the iodate-arsenous acid system, with wave acceleration and deceleration as well as total
wave annihilation being reported [9, 10]. Applying an electric field to this system has also
been seen to affect the reaction selectivity mechanism resulting in qualitative changes in the
waveform [11, 12]. Theoretical investigations into electric field effects on front waves have
dealt extensively with ionic autocatalytic systems [13–17] with a variety of different structures
being possible dependent mainly on the strength and direction of the applied field and the ratio
of the diffusion coefficients of the reacting ionic species. The effects of applying an electric
field on the lateral stabilty of planar front waves in ionic autocatalytic systems has also been
discussed [18]. The result of all these studies is to show that the coupling of reaction and
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diffusion with applied electric fields can, even in these kinetically simple systems, lead to a
wide range of spatio-temporal behaviour.

There has been very much less attention directed towards understanding the effects that
electric fields can have on pattern formation in reaction-diffusion systems. Ortoleva [19] origi-
nally suggested that the differential migration of ionic species resulting from the application of
an electric field could modify and even destabilize an otherwise static structure. This possibil-
ity was clearly demonstrated in extensive numerical simulations of a system based on an ionic
version of the Brusselator kinetic model [20, 21]. The electric field was seen to deform the
pattern form (arising originally from a Turing Bifurcation as well as causing pattern splitting
and coalescence. For stronger fields, coexistent regions with qualitatively different dynamics
were seen to form, including regions of spatio-temporal chaos.

Here we consider this basic problem further by investigating the effects that an electric field
can have on the spatial structures that arise in a model system based on an ionic version of
Gray-Scott kinetics. We assume that the reaction is taking place within a backgound medium
with a high ionic strength, enabling the constant field strength approximation to be made and
the basic equations simplified. The previous studies [20, 21] used a variable electric field
strength model, as derived for general ionic reacting systeml by [19, 22, 23]. We consider
a one-dimensional reactor of finite length and three types of boundary conditions, namely
prescribed concentrations, zero flux and periodic. We find that the conditions for bifurcations
from the spatially uniform state, as given by a linear stability analysis, are the same for the
prescribed concentration and zero flux cases. We show that applying an electric field can sup-
press the formation of spatial structure which would otherwise be generated through a Turing
bifurcation, can alter the mode selection for the pattern and that spatial structure can arise with
the electric field applied when it would not do so otherwise. With periodic boundary conditions
the primary mechanism for pattern formation is found to be through a Hopf bifurcation. This
results in the development of travelling waves. These form in any applied field, no matter how
small when the system is capable of sustaining steady patterns without the electric field, and,
when this is not the case, there is a minimum field strength above which travelling waves form.
The implications of these linear stability conditions for pattern formation are then considered
through numerical simulations of the full model.

2. The model

The ionic version of the cubic autocatalator model [24] that we consider is

P+ → A+ ratek0p0, (1)

A+ + 2B+ → 3B+ ratek1ab
2, (2)

B+ → C+ ratek2b, (3)

with at least one further speciesQ− present (though not taking part in the reaction) to maintain
electroneutrality. The precursor speciesP+ can be regarded as a relatively stable starting
reactant which undergoes chemical transformation via two intermediate speciesA+ andB+
to the final inert productC+. The initial concentrations ofP+ andQ− are assumed to be very
much greater than the maximum concentrations achieved by the intermediates. The neglect of
precursor consumption in (1) can be justified by the ‘pool chemical approximation’ [25], so
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that the concentration ofP+ can be taken as constant (at its initial concentrationpo) through-
out. A full description of the derivation of the (non-ionic) cubic autocatalator model (1–3),
as well as its behaviour as an oscillator (well-stirred system) and in the reaction-diffusion
context, is given in [24].

With P+ andQ− present in excess, so that reactions (2, 3) make only a small net contri-
bution to the overall ionic balance, we can invoke the constait field strength approximation
used extensively in previous models (see [2, 4, 5, 7, 8], for example). A formal justification
for making this approximation can be derive following closely that presented in [16, 17].
We assume that any spatial variations within the reactor can be represented adequately by a
single longitudinal space variable. We make the equations governing the reaction, diffusion
and electrochemical migration of reacting speciesA+ andB+ dimensionless using [25](
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are the dimensionless parameters. We can, without any loss in generality, assume thatE ≥ 0.
HereDA andDB are the diffusion coefficients ofA+ andB+ respectively,e is the (constant)
applied electric field,T , F andR are temperature (assumed constant) and the Faraday and gas
constants respectively.

Equations (4, 5) posses the spatially uniform stationary stateS = {(a, b) = (µ−1, µ)},
which is temporally stable (i.e., without diffusion or electromigration) for itµ > 1 [25]. This
leads us to apply the initial conditions

a = µ−1, b = µ at t = 0,0< x < l (7)

perturbed slightly to allow for the formation of spatial structure (as described in the numerical
simulations below). We consider three types of boundary conditions, namely

Prescribed concentrations: a = µ−1, b = µ, at x = 0, l, t > 0, (8)

Zero flux : ∂a
∂x
= 0,

∂b

∂x
= 0, at x = 0, l, t > 0, (9)

Periodic: a(0, t) = a(l, t), b(0, t) = b(l, t),
∂a

∂x
(0, t) = ∂a

∂x
(l, t),

∂b

∂x
(0, t) = ∂b

∂x
(l, t), for t > 0.

(10)
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We are concerned here with the possibility that the combination of diffusion and electro-
chemical migration might destabilize the otherwise spatially uniform stationary stateS, so we
restrict our attention to the caseµ > 1. We start by considering the effect of making a small
perturbation to initial conditions (7).

3. Linear stability analysis

3.1. PRESCRIBED CONCENTRATIONS

We consider small perturbations toS by puttinga = µ−1 + A, b = µ + B, whereA andB
are small. Equations (4), (5) become, on linearization,

∂A

∂t
= ∂2A

∂x2
= −E∂A

∂x
− µ2A− 2B, (11)

∂B

∂t
= D∂

2B

∂x2
−DE∂B

∂x
+ µ2A+ B, (12)

subject to the boundary conditions

A = B = 0 at x = 0, l, t > 0. (13)

To solve Equations (11), (12) we first expressA andB in the formA = eEx/2Ā, B =
eEx/2B̄. From (13) we still haveĀ = B̄ = 0 onx = 0, l and Equations (11), (12) become

∂Ā
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∂x2
−
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We look for a solution to Equations (14, 15) as(
Ā
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)
=
∞∑
n=1

(
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)
eωnt sin

(nπx
l

)
satisfying the boundary conditions onx = 0, l. Substitution in Equations (14, 15) then leads
to the dispersion relation
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(16)

where

kn = nπ
l
(n = 1,2, . . . ).

3.2. ZERO-FLUX BOUNDARY CONDITIONS

For the case of zero flux boundary conditions (9) we can still writeA = eEx/2Ā, B = eEx/2B̄
in the linearized Equations (11), (12). Now we require
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2
B̄ = 0 atx = 0, l. (17)

This suggests that we looking for a solution in the form(
Ā
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)]
satisfying boundary conditions (17). Sustitution in Equations (14), (5) again gives dispersion
relation (16).

We now consider dispersion relation (16) in more detail.

3.3. NEUTRAL CURVES

The coefficient ofωn in expression (16) is positive for allkn (for µ > 1) and so the only
possibility for an instability is forωn = 0 (saddle-node bifurcation). From (16) this occurs
when

D
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4
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4

)
+ µ2 = 0, (18)

from which it follows that we must haveDµ2 < 1 (and henceD < 1 withµ > 1). Condition
(18) gives the neutral curves (the curves on whichωn = 0), the crossing of which as a
parameter varies changes the stability of the spatially uniform steady stateS.

Equation (18) can be solved to get

k2
n +

E2

4
= (1−Dµ2)±√1− 6Dµ2+D2µ4

2D
. (19)

Expression (19) requiresDµ2 ≤ 3−2
√

2 (with co-incident roots whenDµ2 = 3−2
√

2). This
is a necessary condition for a Turing bifurcation [26]. ForDµ2 < 3− 2

√
2, expression (19)

represents a pair of straight lines in the(E2, k2
n)-plane. The situation is illustrated in Figure 1,

whereX1,2 are given by

X1,2 = (1−Dµ2)∓√1− 6Dµ2+D2µ4

2D
(20)

From Figure 1 we can see that, withE = 0 (forDµ2 < 3−2
√

2), the uniform steady state
S can become unstable through a Turing bifurcation provided there is at least one integern

such that

X1 <
n2π2

l2
< X2. (21)

If this is the case, we may expect the exponential growth predicted by linear theory to be
equilibrated at finite amplitude by the nonlinear terms and a pattern (a stable, spatially non-
uniform steady state) to result [26]. The effect of applying an electric field can give rise to
several possibilities. It may be possible to change the wavenumberkn at whichS becomes
unstable,i.e.a value ofkn which lies inside the unstable region shown in Figure 1 withE = 0
may lie outside it whenE > 0 while there could a value of another wavenumber which now
lies inside the unstable region, whereas withE = 0 it did not. Also, it may be the case that
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Figure 1. The neutral curves (whereωn = 0) as given by Equations (19,20) forDµ2 < 3− 2
√

2, E2 plotted
againstk2

n, for both prescribed concentration and zero flux boundary conditions,X1 andX2 are given by (21). The
regions where the spatially uniform stateS is stable/unstable are shown.

there is no value of the wavenumber that lies inside the unstable region whenE = 0 though
with E > 0 there could be such a wavenumber. For sufficiently strong fields(E2 > 4X2)

Figure 1 shows thatS is stable to small perturbations with all wavenumbers. All this suggests
that applying the electric field can change the basic pattern form, create spatial structure when
none exists without the field or suppress pattern formation altogether. Finally, we note that
applying an electric field cannot alter the inherent stability ofS if Dµ2 > 3 − 2

√
2, in

which case<(ωn) remains negative for allE. We examine these predictions from linear theory
by obtaining numerical soultions of the full initial-boundary-value problem (4-9), but before
doing so we consider the case when the periodic boundary conditions (10) are applied.

3.4. PERIODIC BOUNDARY CONDITIONS

A solution to the linearized Equations (11), (12) satisfying the periodic boundary conditions
(10) can be expressed in the form(
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Substitution in Equations (11, 12), equating terms in cos((2nπx)/ l) and sin((2nπx)/ l), and
requiring that the resulting linear algebraic equations for the coefficientsan, bn, cn anddn have
a nontrivial solution leads to a dispersion relation which is now a quartic inωn, namely
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and where the wavenumber is nowκn = (2nπ)/ l (n = 1,2, . . . ).
We first consider the possibilty of having saddle-node bifurcations withE > 0 through

ωn being zero. This requires that the coefficientD0 in Equation (22) be zero, which can be
possible only if the coefficient ofE2 in this expression is negative. We can write the condition
thatD0 = 0 in the form[

Dκ2
nE

2+ (Dκ4
n − (1−Dµ2)κ2

n + µ2)]2+ (1− 6Dµ2+D2µ4)κ2
nE

2 = 0, (23)

from which it follows that a necessary condition to haveD0 = 0 is that 3− 2
√

2 < Dµ2 <

3+ 2
√

2. If we now regard Equation (23) as a quadratic equation forE2 and calculate the
discriminant1, we find that

1 = [2Dκ2
n − 1+Dµ2]2 (1− 6Dµ2+D2µ4) . (24)

Expression (24) is negative forDµ2 in the range 3− 2
√

2 < Dµ2 < 3+ 2
√

2 and hence
there are no real roots in this case and we cannot have a bifurcation withωn = 0. The only
possibility is to haveE = 0. From the dispersion relation (22) and expression (23) we can see
thatωn = 0 (withE = 0) when

Dκ4
n − (1−Dµ2)κ2

n + µ2 = 0, (25)

which recovers the condition for a Turing bifurcation given previously [26], namely that, for
Dµ2 < 3− 2

√
2, a Turing bifurcation will arise withE = 0 provided there is at least one

integer in the rangeX1 < (4n2π2)/(1/ l2)X2 (whereX1, X2 are given by (20)). The above
establishes thatD0 > 0 forE > 0 for allD andµ.

We next consider the possibility of having a Hopf bifurcation. This will occur whenωn is
purely imaginary and to determine the curves in(E2, κn)-space on which this will occur we
putωn = iαn(αn real). Substitution in Equation (22), equating real and imaginary parts and
then eliminatingαn. We obtain the condition for a Hopf bifurcation as

C2
0 − A0B0C0+ A2

0D0 = 0, (26)

whereA0, B0, C0 andD0 have been given above. Relation (26) can be expressed as a quadratic
equation inE2 as

a0κ
4
nE

4+ b0κ
2
nE

2+ c0 = 0, (27)

where

a0 = (1−D)2(1+D)2(µ2 + κ2
n)(1−Dκ2

n),

b0 = −2
[
(1+D)κ2

n + µ2 − 1
]2 (
(D2+ 1)(Dκ4

n − (1−Dµ2)κ2
n + µ2)− (1−D2µ2

)
,

c0 = −
[
(1+D)κ2

n + µ2− 1
]4 (
Dκ4

n − (1−Dµ2)κ2
n + µ2

)
.

Clearly Equation (27) requiresD 6= 1. Equation (27) can be solved to give, after some algebra,
the roots

E2
1 =

((1+D)κ2
n + µ2− 1)2(Dκ4

n − (1−Dµ2)κ2
n + µ2)

(1−D)2κ2
n(1−Dκ2

n)(µ
2+ κ2

n)
, (D 6= 1) (28)

E2
2 = −
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n + µ2− 1)2

(1+D)2κ2
n

. (29)
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Figure 2. Hopf bifurcation curves for periodic boundary conditions,E2
1 plotted againstκ2

n as given by Equa-

tion (29) for the cases (a)Dµ2 < 3−2
√

2, whereX1 andX2 are given by expression (21) and (b)Dµ2 > 3−2
√

2,
showing the strictly positive minimum value ofE below whichS is stable for all wavenumbers.

Clearly it is only the rootE2
1 as given by (28) that is required. IfDµ2 < 3− 2

√
2 (so that

Turing bifurcations are possible withE = 0) the numerator in (28) is negative forX1 < κ
2
n <

X2 (againX1, X2 are given by (20)) and positive otherwise. The Hopf bifurcation curve has
vertical asymptotes atκ2

n = 0 and atκ2
n = 1/D (note thatX2 < 1/D). The curve has the form

shown in Figure 2a in this case. IfDµ2 > 3− 2
√

2, (D 6= 1), the numerator is positive for
all κ2

n and the the Hopf bifurcation curve has the form shown in Fogure 2b. In this case there
is a (strictly positive) minimum value ofE below whichS is stable for all wavenumbers. The
bifurcation curve shown in Figure 2b is similar in form to that derived by Satnoianuet al. [27,
28] for a related problem. There are no solutions to Equation (28) forD = 1, since, in this
case,a0 = 0 andb0 andc0 are both negative.

We can interpret the graphs shown in Figure 2 as follows. If the system supports a Turing
bifurcation withE = 0, then the steady stateS remains unstable withE > 0. However,
with E > 0 the primary bifurcation is now a Hopf bifurcation, as opposed to the saddle-
node bifurcation for the Turing instability, and this results in the steady stuctures withE = 0
becoming travelling waves propagating in the system forE > 0. If the system cannot support
a Turing bifurcation withE = 0 then there is a (strictly positive) threshold value of the
applied electric field above whichS may become unstable. This can happen withDµ2 <

(3 − 2
√

2) and there being no wavenumberκn such thatX1 < κ2
n < X2 (Figure 2a) or

whenDµ2 > (3− 2
√

2). This latter case requiresκ2
1 (at least) to be such thatκ2

1 < 1/D or
equivalentlyl > 2π

√
D (Figure 2b). If this is the case thenS becomes unstable through a

Hopf bifurcation (again to travelling waves) for all applied field strengthsE > Emin where
Emin = min{E1(κ

2
i ) = κ2

i < 1/D}.
We now test the various predictions obtained from our linear stability analysis by numerical

simulations of the full initial-value problem (4,5).

4. Numerical simulations

The initial-boundary-value problem (4,5,8) was solved numerically by use of a standard im-
plicit method, based on the Crank-Nicolson scheme, for integrating parabolic equations, see
[29] for more details. Boundary conditions (8) or (9) were implemented in the usual way
and only a slight modification was required to account for the periodic conditions (10). We
transformed the spatial domain from 0< x < l to 0 < X < 1 by puttingX = x

l
and the
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Figure 3. Concentration profiles fora and b obtained at large times from the numerical integration of
initial-boundary-value problem (4, 5, 8) forE = 4·0, l = 2·0 andD = 0·0674, µ= 1·5.

results are presented in terms ofX. A small local perturbation was made to the initial stateS
and this was followed as it evolved in time. The results presented below are for the large-time
behaviour when transient effects have died out and when the system has reached a steady state
or some other clearly defined time varying structure. We treat the three cases in turn.

4.1. PRESCRIBED CONCENTRATION

We took fixed values forµ andD, namelyµ = 1·5,D = 0·0674, so thatDµ2 < (3− 2
√

2),
and examined how the solution evolved for different values ofl andE. For these parameter
valuesX1 = 3·7986 andX2 = 8·7882. In all cases we found that the solution approached a
steady state fort large and this is what we concentrate on.

We start by considering the casel = 2·0. Herek2
1 < X1 and 2

2 > X2 so there is no Turing
bifurcation withE = 0. It is only thek1-mode that can become unstable forE > 0 and
this mode lies in the unstable region forE in the rangeE(1)1 = 2·3075< E < 5·0282=
E
(1)
2 , where we use the notationE(n)i to denote where thekn-mode crosses the neutral curves

E2/4= Xi − k2
n, i = 1,2 (see Figure 1). For values of 0< E < E(1)1 andE > E(1)2 we found

that the initial perturbation produced some short-time transient behaviour in which a spatial
structure formed before dying away, with the system returning to the spatially uniform state
S. For values ofE in the rangeE(1)1 < E < E

(1)
2 a stable steady spatial structure formed, as

predicted from linear theory. This is illustrated in Figure 3, where we give large time plots of
the concentrationsa andb for E = 4·0. This pattern has a single turning point associated with
thek1-mode and shows a marked skew in the direction of the electric field.

We next considered the case where there was a Turing bifurcation withE = 0, taking
l = 6·0. In this case both thek4 andk5-modes are unstable withE = 0 and it is thek5-mode
that is selected from our initial perturbation, as can be seen in Figure 4a (forE = 0). (Figures 4
give plots ofb at large times for this case.) In Figures 4b-e we illustrate the change in the
pattern form as the electric field strengthE is increased. Figure 4b (E = 2·828) shows an
increase/decrease in the maximum/minimum concentrations, with thek4-mode now appearing
to be the most unstable mode (E

(5)
2 = 2·7816 is less than this value ofE and so we could

expect a change in the dominant mode). There is also a skewing of the pattern in the direction
of the electric field (compare with Figure 4a). This trend continues for increasedE (Figures 4c
and 4d forE = 4·0 andE = 4·899 respectively). Figures 4c,d show that relatively large
concentrations ofB+ can be achieved in the pattern and that, asE is increased, the next (k3-
mode) is selected(E(4)2 = 4·1961). On further increasingE, we approach the upper stability
boundary atE(1)2 = 5·8358, as is evident in Figure 4e (forE = 5·2915). In this case the
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Figure 4. Concentration profiles forb obtained at large times from the numerical integration of ini-
tial-boundary-value problem (4, 5, 8) forD = 0·0674, µ = 1·5, l = 6·0 and (a)E = 0·0, (b) E = 2·828,
(c)E = 4·0, (d)E = 4·899, (e)E = 5·2915.

maximum deviations fromS are reduced from those seen in Figure 4d and it is thek2-mode
that appears to be selected. A feature to note about the patterns forE close toE(1)2 is that both
((∂a)/(∂x))x=0 and(∂b)/(∂x))x=0 become very small.

We find that stable patterns arise for values ofE slightly greater thanE(1)2 , up toE ' 5·9
in the present case. These patterns are similar to those shown in Figure 4e, with the maximum
concentration ofB+ being slightly reduced and both((∂a)/(∂x))x=0 and ((∂b)/(∂x))x=0
becoming smaller. For larger values ofE than these there is transient behaviour whereby a
structure similar to that seen Figure 4e is rapidly formed. This then propagates slowly in the
direction of the field towards theX = 1 boundary, where it leaves the system which finally
returns to the spatially uniform stateS.

All the results described above resulted from a perurbation localised close toX = 0.
We tried different locations for the initial perturbation toS and found that the form that the
resulting pattern took could depend on the location of this perturbation. We illustrate this
by comparing the patterns which arise from perturbingS close to theX = 1 boundary for
E = 4·0 and l= 6·0. This is shown in Figure 5 to compare with Figure 4c. These results
suggest that the system is capable of sustaining different stable spatial structures for the same
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Figure 5. Concentration profiles forb obtained at
large times from the numerical integration of initial-
boundary-value problem (4, 5, 8) forE = 4·0, l =
6·0,D = 0·0674, µ= 1·5 with the initial perturbation
close to theX = 1 boundary. This illustrates the depen-
dence of the final pattern on the location of the initial
perturbation, compare with Figure 4c.

Figure 6. Bifurcation diagram, a plot ofb1 ≡ b′(1)
againstE obtained from the numerical solution of the
steady versions of Equations (4, 5, 8), forµ = 1·5, D =
0·05, l= 2·0. The bifurcations from small amplitude at

E
(1)
1 andE(1)2 are shown by•.

set of parameter values. We next examine this point, and the possibility of having patterns for
values ofE > E

(1)
2 further by determining(a(x), b(x)), the solutions to the steady versions

of Equations (4,5,8).

4.1.1. Bifurcation Diagram
We determined(a(X), b(X)) (whereX = x/l) by solving the steady versions of Equa-
tions (4,5,8) numerically using a standard boundary-value problem solver. The results are
presented in terms of plots ofb1 ≡ b′(1) againstE (for given values of the other parameters).
We consider a case where Turing structures are possible withE = 0, namelyµ = 1·5,D =
0·05, l = 2·0. For these valuesX1 = 3·0642 andX2 = 14·6858 so that it is only thek2-mode
which is unstable forE = 0. The results are shown in Figure 6.

This figure shows two distinct sets of solutions forE ≥ 0, with both bifurcations from
small amplitude atE(1)1 andE(1)2 being transcritical bifurcations (located on Figure 6 by•). The
bifurcation from small amplitude atE(1)2 = 6·991 produces a solution branch forE < E

(1)
2 ,

giving a finite amplitude pattern atE = 0, with thek2-mode being the dominant mode for this
branch. The transcritical bifurcation atE(1)2 also produces a solution branch inE > E(1)2 . This
undergoes a saddle-node bifurcation atE = 8·0186 leading to a further branch forE < E

(1)
2 ,

which also has a finite amplitude pattern atE = 0. This second solution branch crosses the
b1 = 0 axis atE = 5·601, where there is still a finite amplitude pattern, and corresponds to the
change in dominant mode fromk2 to k1. The stability of these solution branches, as obtained
from numerical integrations of initial-boundary-value problem (4, 5, 8) from different initial
perturbations, are indicated on the figure.

The transcritical bifurcation from small amplitude atE = E(1) = 1·545 gives solution
branches in which thek1-mode is dominant throughout. The solution branch inE > E

(1)
1

arising from this bifurcation has a further saddle-node bifurcation atE = 2·534 resulting in
another two finite amplitude patterns atE = 0. The stability of these solution branches, again
obtained from numerical integrations of Equations (4, 5, 8), is also indicated on Figure 6. The
main features to note from the bifurcation diagram shown in Figure 6 is that (up to three)
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different stable patterns are possible for the same parameter values and that there is an upper
bound on the electric field strengthE for the existence of these patterns.

4.2. ZERO FLUX

Here we took the same parameter values as for the prescribed concentration case when there
is a Turing bifurcation atE = 0, namelyµ = 1·5,D = 0·0674, l= 6·0 and solved initial-
boundary-value problem (4,5,9) numerically for a range of values ofE. The results are shown
in Figure 7 as profile plots of the concentrationb at sufficiently large times for these to have
become steady. A similar picture to that seen previously emerges. ForE = 0 (Figure 7a) the
k5-mode is the dominant one. The dominant unstable mode changes asE is increased with the
patterns having fewer turning points and much larger concentrations ofB+ being attained. A
further feature to note about the patterns shown in Figure 7 is the region close to theX = 1
boundary where the autocatalystB+ is almost entirely removed (see especially Figures 7b,c).
For the larger values ofE (Figures 7d,e) the concentration profile ofB+ close to theX = 0
boundary becomes flat, at its spatially uniform value ofb = 1·5, even though large excursions
from this value are seen towards theX = 1 boundary. As in the previous case, the particular
pattern to which the system settles at larget depends on the nature of the initial perturbation,
with different patterns being possible at the same parameter values, as will be confirmed in
the bifurcation diagram we describe below for zero flux boundary conditions. Finally we note
that for sufficiently large field strengths pattern formation was fully suppressed and only the
spatially uniform stateS appeared as the long-time behaviour.

4.2.1. Bifurcation Diagram
The steady-state versions of situations (4,5,9) were integrated numerically by means of a stan-
dard boundary-value problem solver forD = 0·05, µ= 1·5, l = 2·0. The results are shown in
Figure 8 as plots ofb(1) againstE. As these are the same parameter values as for Figure 6, (I)
=E(1)1 andE(1)2 take the same values, namelyE(1)1 = 1·545, E(1)2 = 6·991 (shown by•). Again
the bifurcations at small amplitude fromE(1)1 andE(1)2 are transcritical bifurcations, though
here the picture is somewhat more complex than that shown in Figure 6. Now it is possible to
have up to six different solutions for the same set of parameters (e.g.atE = 2·5), though not
all these are stable. (The stability of the various solution branches is indicated on the figure.)
There are now just two (only one being stable) finite amplitude patterns atE = 0 and again
nontrivial solutions exist forE > E

(1)
2 , up to the saddle-node bifurcation atE = 8·0199. The

existence of a range ofE over which for one stable solution branchb(1) is almost zero can
be seen (compare with Figures 7b,c) and the stable solutions corresponding to high values
of b(1) for E > 6·5 haveb(0) ' 1·5 (compare with Figures 7d,e). The important points to
note from Figure 8 are that multiple stable patterns (up to 4) are possible and that there is an
upper bound onE for the existence of stable patterns, which is slightly greater than the upper
bifurcation value predicted from linear theory.

We now turn to the case of periodic boundary conditions, where linear theory predicts
qualitatively different behaviour.

4.3. PERIODIC BOUNDARY CONDITIONS

We consider two cases, namely one where there is a Turing bifurcation withE = 0, which
necessitates havingD < 1, and a case whereD > 1, for which there can be no Turing
bifurcation withE = 0 and a strictly positive value forE is needed to give an instability
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Figure 7. Concentration profiles forb obtained at large times from the numerical integration of ini-
tial-boundary-value problem (4, 5, 9) (zero flux boundary conditions) forD = 0·0674, µ= 1·5, l = 6·0 and
(a)E = 0·0, (b)E = 2·828, (c)E = 4·0, (d)E = 4·899, (e)E = 5·2915.

(Figure 2b). For each case we tookµ = 1·5 and thenD = 0·0674, l= 20·0 for the first case
andD = 10·0, l = 100·0 for the second case.

The results for the first example are shown in Figuere 9 as grey-level contour plots ofb.
This sequence of figures shows the steady Turing pattern withE = 0 (Figure 9a) and the
development of travelling waves forE > 0, travelling waves were found to develop for all
the values ofE > 0 tried, no matter how small, confirming the predictions from linear theory.
Figures 9b (forE = 2·828) and 9c (forE = 6·0) show that the number of waves on the
interval 0≤ x ≤ l decreases asE increases, from 8 waves withE = 0 to 5 waves (Figure 9b)
and 3 waves Figure 9c). For these values ofE, the waves propagate to the left with speeds
computed from the numerical integrations ofv = −0·085 andv = −0·081, respectively. As
E is increased further, Figure 9d forE = 6·8556, the wave speed has decreased considerably
from that shown in Figure 9c, tov = −0·0085. For slightly higher values ofE (Figure 9e for
E = 7·071, wherev = 0·009) the direction of propagation changes and the waves now travel
to the right, with a speed which increases withE (Figure 9f forE = 11·0, wherev = 0·106).

ForD = 10·0 (andµ = 1·5) the turning point on the neutral curve givesEmin = 1·849, at
κ2 = 0·029, (see Figure 2b). Withl = 100 the first mode to go unstable isκ3 atE = 1·908
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Figure 8. Bifurcation diagram, a plot ofb(1) againstE obtained from the numerical solution of the steady versions
of Equations (4, 5, 9) (zero flux boundary conditions), forµ = 1·5, D = 0·05, l = 2·0. The bifurcations from

small amplitude atE(1)1 andE(1)2 are shown by•.

(theκ2 and theκ4 modes become unstable atE = 2·216 andE = 3·179, respectively). For this
case we found that all the travelling waves that formed as a result of applying electric fields of
sufficient strength to causeS to become unstable propagated to the right (in the direction of
the electric field). The speed of propagation increased and the number of waves on 0< x < l

decreased with increasingE. Apart from this the picture is essentially the same for all cases,
hence we illustrate this case with only a single contour plot (Figure 10) forE = 5·0.

5. Discussion

Without the electric field the same general behaviour was found in all three cases (prescribed
concentration, zero flux and periodic boundary conditions). In each case where there is at
least one wavenumber lying betweenX1 andX2 (see Figures 1, 2a and Equation (20)) the
spatially uniform steady stateS is destabilised through a Turing bifurcation after an initial
perturbation. This requiresDµ2 < 3− 2

√
2, otherwiseS remains stable. In all cases a stable,

spatially non-uniform steady state (pattern) is achieved at large times. The structure of this
pattern reflects the values of the dimensionless parameters, namelyD,µ andl, as well as the
particular boundary conditions imposed. For periodic boundary conditions the pattern consists
of a series of stationary waves of uniform frequency and amplitude, such that an exact number
of waves are formed on the given interval. This is not necessarily the case with prescribed
concentration and zero flux boundary conditions, where the form that the pattern takes can
also depend on the location of the initial perturbation.

Applying electric fields to the system results in qualitatively different behaviour depending
on the nature of the boundary conditions, essentially differentiating between the cases of
periodic and prescribed concentration or zero flux boundary conditions. In the former case,
the electric field causes the stationary pattern to change to a pattern propagating as a series of
travelling waves. The speed of propagation, as well as the structure, of these travelling waves
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Figure 9. Grey-gevel contour plots ofb obtained from the numerical integration of initial-boundary-value problem
(4, 5, 10) (periodic conditions) forµ = 1·5, D = 0·0674, l= 20·0 and (a)E = 0·0, (b)E = 2·828, (c)E = 6·0,
(d)E = 6·8556, (e)E = 7·071, (f)E = 11·0, the darker the colour the higher the concentration ofB+.
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Figure 10. A grey-level contour plot ofb obtained from the numerical integration of initial-boundary-value prob-
lem (4, 5, 10) (periodic conditions) forµ = 1·5, D = 10·0, l = 100·0 and E= 5·0, the darker the colour the
higher the concentration ofB+.

is strongly influenced by the the strength of the electric field; generally both the propaga-
tion speed and the wavelength of the waves increases as the field strength increases, though
changes in propagation direction are also possible. These structures are not terminated and are
seen to persist for all field strengths, giving rise to large propagation speeds in strong fields.
A further feature to note for this case is that spatio-temporal behaviour can be generated
even when none would be possible without the electric field, by applying a field above some
minimum value.

This is not the case with prescribed concentration or zero flux boundary conditions, where a
necessary condition for the generation of spatial structure is that the system parameters satisfy
the basic conditions required for a Turing bifurcation. The behaviour in both these cases is
qualitatively similar, in that the conditions from linear theory forS to become unstable are the
same and that any patterns that are formed remain stationary when the electric field is applied.
No long time unsteady behaviour was found in either case. Applying an electric field can
change the basic pattern form (generally skewing it in the direction of the field), can give rise
to patterns where the domain size is such that none would form without the field and can give
multistability, with the pattern seen being dependent on the nature of the initial perturbation.

A further difference is that pattern formation can be suppressed by applying a sufficiently
strong field. We illustrate this in Figure 11, where we give a grey-level contour plot ofb, taking
D = 0·05, l = 12·0, µ = 1·5 and zero flux boundary conditions. For this figure the system
was first allowed to evolve (tot = 350) into the Turing pattern without the electric field being
applied. Att = 350 a slowly increasing field strength was applied,E = 0·04(t − 350), to
t = 610, whereE = 10·4 (above the value where patterns can exist). This figure shows the
initially steady pattern increasing in amplitude and slowly propagating in the direction of the
field, leaving the domain at the endX = 1. The result is the number of ‘peaks’ in the pattern
decreasing asE increases (compare with the sequence of plots shown in Figures 4 and 7) with
its system reverting to the spatially uniform stateS at a sufficiently high field strength (by
E = 10 in this case).

There is some experimental evidence [30] that applying electric fields can strongly af-
fect Turing structures. These experiments show the development of a front when the field
is applied, which propagates partially across the reactor leaving a region of spatial structure
ahead separated from a region of uniform concentration. This behaviour is, in many respects,
not dissimilar to the results shown in Figures 4e, 7e and 11. They also report that electric
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Figure 11. Effect of a slowly increasing electric field strength with zero-flux boundary conditions, the darker the
colour the higher the concentration ofB+. HereD = 0·05, µ = 1·5, l = 12·0, a Turing pattern was allowed to
develop fully (tot = 350) before the field was switched on,E = 0·04(t − 350). The spatially uniform state is
achieved byt = 600, (E= 10·0).

fields above some critical value remove all spatial structure, also in line with our theoretical
predictions.

Finally, we note that our attention has been focussed entirely on the case when the kinetic
model is stable (hereµ > 1). Our kinetic model is capable of an oscillatory response, arising
through a supercritical Hopf bifurcation, and the interaction between this and the steady spatial
structures generated by the electric field-influenced Turing bifurcations described above is
under further investigation.
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